

PROPERTIES AND AMINO ACID SEQUENCE OF THE FERREDOXIN FROM THE UNICELLULAR CYANOBACTERIUM *SYNECHOCOCCUS* 6307

RYOJI MASUI, KEISHIRO WADA,* HIROSHI MATSUBARA and LYNDON J. ROGERS†

Department of Biology, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan; †Department of Biochemistry, University College of Wales, Aberystwyth, Dyfed SY23 3DD, Wales, U.K.

(Received 22 December, 1987)

Key Word Index—*Synechococcus* 6307; Cyanophyceae; ferredoxin; redox potential; amino acid sequence; taxonomy.

Abstract—A ferredoxin was purified from the unicellular cyanobacterium *Synechococcus* PCC 6307, notable for its unusually high mol% GC. The sequence of 98 amino acids was resolved from investigations of lysylendopeptidase peptides with supplementary data from chymotryptic peptides and carboxypeptidase treatment in some cases. A comparison with the sequences of 18 other cyanobacterial ferredoxins, including some structures derived from gene sequencing is presented. This comparison suggests that on the basis of specific features in the sequence and a phylogenetic tree, *Synechococcus* 6307 more closely resembles the filamentous cyanobacteria rather than unicellular cyanobacteria of other genera.

INTRODUCTION

Ferredoxins are small electron-transfer proteins with a negative redox potential. In oxygenic photosynthetic organisms they have a crucial role in photosynthetic electron flow but also function directly or indirectly in a range of other cell systems; in cyanobacteria, ferredoxin-dependent reactions include nitrogenase, hydrogenase, glutamate synthase, pyruvate-ferredoxin oxidoreductase and thioredoxin-ferredoxin reductase [1]. Cyanobacteria examined have invariably contained one, or in some cases two, ferredoxins which possess a single [2Fe-2S] cluster; however, membrane-bound iron-sulphur centres also occur and may include [4Fe-4S] clusters [2].

Ferredoxins from a considerable number of cyanobacteria have been isolated and characterised to varying extent; 14 have been sequenced [see 1,3] and the sequences of three others have been deduced from gene sequences [4-7] with a fourth [8] possibly being that of a membrane-bound iron-sulphur centre rather a soluble ferredoxin [9]. The broad division into unicellular and filamentous cyanobacteria is generally supported by specific features in the sequences and in phylogenetic trees [10]. However, the sequences of the ferredoxin from the unicellular cyanobacterium *Synechococcus* 6301 [11] proved anomalous in showing closest identity to the ferredoxins from the filamentous heterocystous species *Aphanizomenon flos-aque*, *Chlorogloeopsis fritschii* and *Mastigocladus laminosus*. We now report the sequence of the ferredoxin from the related cyanobacterium *Synechococcus* 6307, notable in this group of prokaryotes for

possessing the highest mol% GC of 71% in its DNA base composition [12], and discuss evolutionary and taxonomic relationships based on cyanobacterial ferredoxin structures.

RESULTS AND DISCUSSION

Isolation and properties

Some 240 g of the cell paste accumulated from bulk cultures totalling 128 l of *Synechococcus* 6307 gave 47 g of an acetone-dried powder. During isolation of the ferredoxin from this only a single ferredoxin was evident during column chromatography on DEAE-cellulose; the final yield of ferredoxin was *ca* 100 mg. The absorption spectrum was characteristic of a [2Fe-2S] ferredoxin with maxima at 276, sh 282, 329, 425 and 460 nm, the latter an extended plateau rather than a distinct maximum. The A_{max}/A_{276} nm ratios for the maxima were 0.78, 0.60 and 0.55, respectively. The ratios would be worsened dramatically by the presence of other proteins and the high A_{329}/A_{276} nm ratio therefore suggested the ferredoxin was homogeneous, a conclusion confirmed by analytical polyacrylamide gel electrophoresis which at a range of concentrations showed only one Coomassie Blue stained band.

The data from a potentiometric titration gave a very good fit to the theoretically derived plot for a one-electron-transferring species, confirming the absence of any other absorbing species of significantly different E_m . The plot of the data as $\log \text{ox/red}$ vs E_h (Fig. 1) shows a value for E_m of -395 mV and a slope of 55 mV, which was close to the theoretical value of 59 mV for a one-electron transfer given by the Nernst equation. The E_m is at the low end of the range for cyanobacterial ferredoxins,

* Present address: Department of Biology, Faculty of Science, Kanazawa University, Kanazawa 920, Japan.

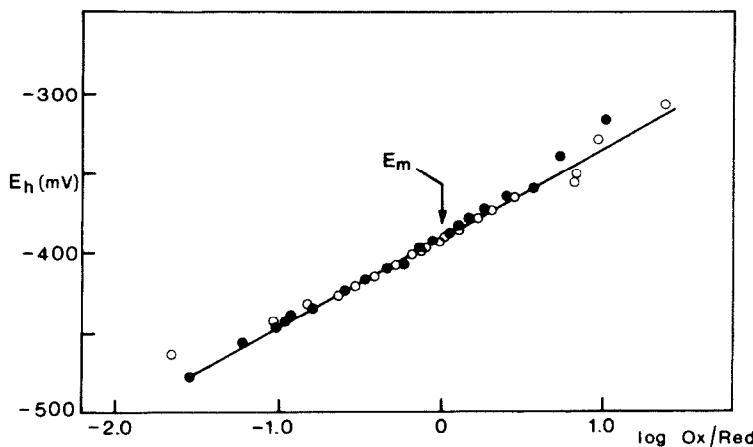


Fig. 1. Midpoint redox potential of *Synechococcus* 6307 ferredoxin. The plot is log ox/red versus cell potential for a reductive titration (○) and a successive oxidative titration (●) at pH 8.0.

and was somewhat lower than the E_m of -380 mV obtained for *Synechococcus* 6301 ferredoxin [9].

Sequence determination

The amino acid sequence summarized in Fig. 2 was deduced from the following studies. To determine the terminal sequences the carboxymethyl (Cm)-ferredoxin (50 nmol) was subjected to manual Edman degradation to establish the amino (N)-terminal sequence of 21 residues. Carboxypeptidase A treatment of Cm-ferredoxin (5 nmol) released tyrosine (0.9 mol/mol protein) and leucine (1.0 mol/mol protein) over 30 min treatment at 40° , in conjunction with later data showing the carboxyl (C)-terminal sequence was -Leu-Tyr.

For subsequent sequence studies the Cm-ferredoxin (700 nmol) was treated with lysylendopeptidase (70 μ g) in 0.1 M Tris-HCl buffer, pH 9, at 30° for 5 hr. The peptides were separated on a reverse-phase C18 column (TSK-GEL, ODS-120T, 4.6 \times 250 mm) with a linear gradient of methyl cyanide from 0-40% using a Gilson HPLC system. The amino acid compositions of the resulting five peptides (K-1 to K-5) are given in Table 1; when summed there was good agreement to the composition data for the Cm-ferredoxin given the uncertainty inherent in information derived from 24 hr hydrolyses.

Each peptide was subjected to manual Edman degradation (K-1, 3 steps; K-2, 11 steps; K-3, 26 steps; K-4, 24 steps; and K-5, 8 steps). The sequence of the final peptide K-5 was therefore completely determined by this analysis.

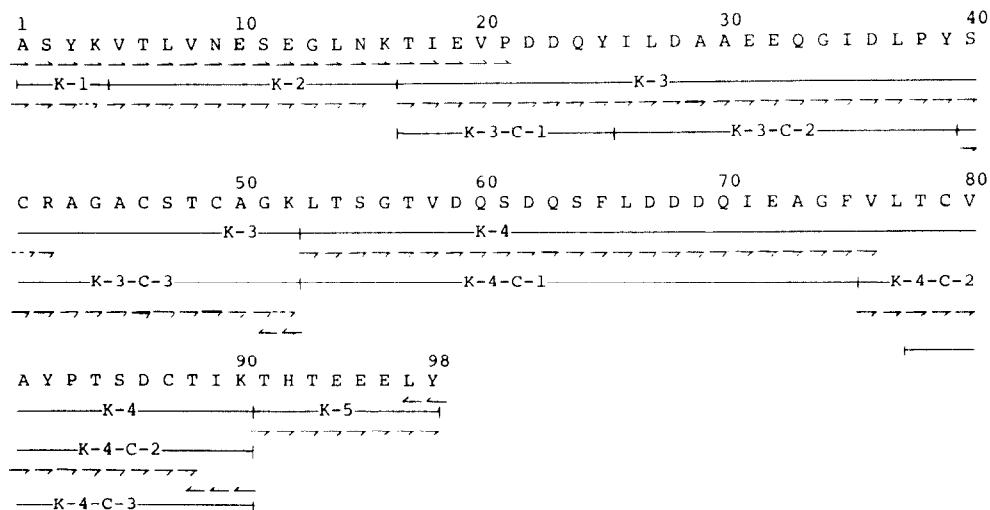


Fig. 2. Summary of the sequence determination for *Synechococcus* 6307 Cm-ferredoxin. K and C refer to lysylendopeptidase and chymotryptic peptides, respectively. Cys was identified as Cm-cysteine. The sequence was determined by a combination of manual Edman degradations of the intact protein (→ below sequence) and peptide fragments (→), and carboxypeptidase A and Y treatment (↔). Dotted arrowheads represent ambiguous identifications. Single letter notation has been used for amino acids.

Table 1. Amino acid composition of Cm-ferredoxin and of the peptides derived by lysylendopeptidase digestion

Amino acid	Cm-Ferredoxin	Peptides (residue numbers in parentheses)				
		K-1 (1-4)	K-2 (5-16)	K-3 (17-52)	K-4 (53-90)	K-5 (91-98)
Cmc	4.2 (5)		0.1	2.4 (3)	1.9 (2)	
Asp	12.4 (12)	0.1	2.0 (2)	4.4 (4)	6.0 (6)	0.1
Thr	10.0 (10)		1.1 (1)	2.1 (2)	4.6 (5)	1.9 (2)
Ser	7.5 (8)	1.0 (1)	1.0 (1)	2.0 (2)	3.5 (4)	0.1
Glu	15.1 (14)	0.1	2.1 (2)	5.8 (5)	4.7 (4)	3.1 (3)
Pro	4.0 (3)			1.7 (2)	1.1 (1)	
Gly	6.8 (6)	0.2	1.1 (1)	3.2 (3)	2.3 (2)	
Ala	7.7 (8)	1.0 (1)		4.9 (5)	2.4 (2)	
Val	5.3 (6)		1.8 (2)	1.1 (1)	2.6 (3)	
Ile	5.0 (5)			2.9 (3)	2.1 (2)	
Leu	7.5 (8)		1.9 (2)	2.3 (2)	3.2 (3)	1.0 (1)
Tyr	4.5 (5)	1.0 (1)		2.1 (2)	1.2 (1)	1.0 (1)
Phe	2.2 (2)			0.1	1.9 (2)	
Lys	3.6 (4)	1.1 (1)	0.9 (1)	1.0 (1)	1.0 (1)	0.1
His	1.0 (1)					0.9 (1)
Arg	0.9 (1)			1.0 (1)		
Total Residues	98	4	12	36	38	8
Yield (%)		42	44	31	37	44

Analyses were based on a 24 hr hydrolysis. The numbers in parentheses are those calculated from the final sequence.

Table 2. Amino acid composition of chymotryptic peptides K-3 and K-4

Amino acid	Peptides (residue numbers in parentheses)					
	K-3-C-1 (17-25)	K-3-C-2 (26-39)	K-3-C-3 (40-52)	K-4-C-1 (53-75)	K-4-C-2 (76-90)	K-4-C-3 (78-90)
Cmc			3.3 (3)		2.0 (2)	2.0 (2)
Asp	1.9 (2)	2.1 (2)	0.1	4.7 (5)	1.1 (1)	1.1 (1)
Thr	0.9 (1)		1.1 (1)	1.8 (2)	2.7 (3)	2.6 (3)
Ser	0.1	0.1	2.1 (2)	2.7 (3)	1.0 (1)	1.0 (1)
Glu	2.1 (2)	3.3 (3)	0.1	4.1 (4)	0.2	0.2
Pro	n.d. (1)	n.d. (1)			n.d. (1)	n.d. (1)
Gly	0.1	1.0 (1)	2.1 (2)	2.1 (2)	0.2	0.3
Ala		1.6 (2)	2.5 (3)	1.0 (1)	1.0 (1)	1.0 (1)
Val	0.9 (1)			0.9 (1)	1.8 (2)	0.8 (1)
Ile	0.9 (1)	2.2 (2)		1.0 (1)	0.9 (1)	0.9 (1)
Leu		2.1 (2)		2.0 (2)	1.0 (1)	0.1
Tyr	0.9 (1)	0.8 (1)			0.8 (1)	0.8 (1)
Phe				1.9 (2)		
Lys			1.0 (1)	0.1	0.9 (1)	0.9 (1)
His			1.1 (1)			
Arg						
Total Residues	9	14	13	23	15	13
Yield (%)	69	69	40	23	27	22

Analyses were based on a 24 hr hydrolysis. The numbers in parentheses are those calculated from the final sequence.

n.d.; Not determined due to an instrumental fault.

Peptide K-3 (170 nmol) was further treated with chymotrypsin (1:100 w/w) in 0.01 M NH₄HCO₃, pH 8.0, at 40° for 3 hr and the resulting peptides purified by HPLC. The amino acid compositions of three peptides (K-3-C-1 to K-3-C-3) are given in Table 2. Subsequently, K-3-C-1 and K-3-C-2 could be placed in the sequence on this data alone given the information from the Edman degradation of K-3. Peptide K-3-C-3 was subjected to manual Edman degradation (40 nmol peptide) and carboxypeptidase Y (30 nmol peptide) to complete the sequence of K-3.

Similarly, peptide K-4 (210 nmol) was treated with chymotrypsin to give three peptides (K-4-C-1; K-4-C-2 and K-4-C-3). Peptide K-4-C-2 was subjected to manual Edman degradation (40 nmol peptide) and carboxypeptidase Y treatment (30 nmol peptide), respectively, and this information together with the amino acid compositions of the three peptides was sufficient to deduce the structure of K-4.

Overlapping peptides were not available to connect K-3 with K-4 and K-4 with K-5 but these fragments could be assigned in order with surety on the basis of the appreciable number of homologous sequences of [2Fe-2S] ferredoxins now documented [1, 3, 10].

So far, 19 complete sequences of cyanobacterial ferredoxins are available, together with a sequence for a putative ferredoxin in *Synechococcus* 6301 based on a gene sequence (Fig. 3). A comparison with these shows the features unique to *Synechococcus* 6307 ferredoxin are Ser-12 and Thr-95 which are not found in other cyanobacterial ferredoxins or those from higher plants or algae listed in [3]; subsequently the former has been found in

Ochromonas danica ferredoxin (unpublished data). *Synechococcus* 6307 ferredoxin also lacks the deletions at positions 11 and 15 in the sequences as shown; these are found in ferredoxins from some unicellular cyanobacteria but are invariably lacking in those from filamentous species.

On the basis of the alignment for maximum homology, an amino acid difference matrix was compiled as shown in Fig. 4, in which one gap in the sequence was counted as one amino acid difference. Inspection shows that apart from clear relationship to ferredoxins from *Synechococcus* 6301 and 7942 (14 differences) the *Synechococcus* 6307 ferredoxin shows most resemblance to those from filamentous cyanobacteria, in particular *Mastigocladus laminosus* and *Chlorogloeopsis fritschii* where there are only nine and 14 differences, respectively. The ferredoxin corresponding to the gene sequences from *Synechococcus* 6301 is diverse from all the other ferredoxins and may represent a bound iron-sulphur centre [9]. The close relationship of *Synechococcus* 6307 to *Synechococcus* 6301 on the basis of their ferredoxins is deserving of comment. Their mol% GC are 71% and 55%, respectively, and on this basis they are sufficiently diverse to be placed in different subgroups of the genus [12]. Such a difference in mol% GC suggests unrelatedness at the genome level, though their ferredoxins, at least, are closely homologous and the two species are similar in structural and developmental respects.

The relationship of the cyanobacterial ferredoxins is emphasised in a phylogenetic tree (Fig. 5) constructed according to [13] on the basis of the aligned sequences. The matrix reconstructed from the branch lengths of the

	1	20	40	60	80	100
(A) <i>A. sacrum</i> I	AS-YKVTLKT-PDG-DNVITVPDDEYILDVAEEEGLDPLPSCRAGACSTCAGKLVSGPA-PDEDQSFLDDQQIAGYILTCVAYPTGDCVIEETHKEEALY					
(B) <i>A. sacrum</i> II	AT-YKVTLINEEEGINAILEVADDQTLILDAGEEAGLDLPLSSCRAGACSTCAGKLVSGAAPNQDQAFLDDDLAAGWVMTCVATPTGDCTIMTHQESEVL					
(C) <i>A. halophytica</i>	AS-YKVTLINEEMGLNETIEVPDDEYILDVAEEEGIDLPSCRAGACSTCAGKIKEGEI-DQSDQSFLDDQQIEAGYVLTCVAYPASDCTIITHQEELY					
(D) <i>Synechococcus</i> sp.	AT-YKVTLVR-PDGSETTIQVPEDEYILDVAEEQGLDLPFSCRAGACSTCAGKLLEGEV-DQSDQSFLDDQQIEKGFLVLTCVAYPRSDCKILTNQEELY					
(E) <i>Synechococcus</i> 6301	AT-YKVTLVNAAEGLNTTIDVADDTYILDAAEEQGIDLPSCRAGACSTCAGKVVSGTV-DQSDQSFLDDQQIAAGFVLTCVAYPTSDVTIETHKEEALY					
(F) <i>Synechococcus</i> 6301*	AT-YQVEVIY--QGQSQTFADDSQSVLDSQAQAGVDPASCLTGVCTTCAARLSGEV-DQPDAMGVGPEPAKQGYTLLCVAYPRSDLKIEHEDELYALQFGQPG					
(G) <i>Synechococcus</i> 7942*	AT-YKVTLVNAAEGLNTTIDVADDTYILDAAEEQGIDLPSCRAGACSTCAGKVVSGTV-DQSDQSFLDDQQIAAGFVLTCVAYPTSDVTIETHKEEALY					
(H) <i>Synechococcus</i> 6307	AS-YKVTLVNESEGLNKTIEVPDDQYILDAAEEQGIDLPSCRAGACSTCAGKLTSQTV-DQSDQSFLDDQQIEAGFVLTCVAYPTSDCTIKTHTEEELY					
(I) <i>Synechocystis</i> 6714	AS-YTVKLIT-PDG-ENSIECSDDOTYILDAAEEAGLDLPLPSCRAGACSTCAGKTAGSV-DQSDQSFLDDQQIEAGYVLTCVAYPTSDCTIETHKEEALY					
(J) <i>Anabaena</i> sp. 7120*	AT-FKVTLINEAEGTKHEIEVPDDEYILDAAEEQGYDLPFSCRAGACSTCAGKLVSGTV-DQSDQSFLDDQQIEAGYVLTCVAYPTSDVVQIOTHKEEALY					
(K) <i>An.</i> variabilis	AT-FKVTLINEAEGTKHEIEVPDDEYILDAAEEEGYDLPFSCRAGACSTCAGKLVSGTV-DQSDQSFLDDQQIEAGYVLTCVAYPTSDCVIOTHKEEALY					
(L) <i>An.</i> variabilis 29413*	AT-FKVTLINEAEAGTSNTIDVPDDEYILDAAEEEGYDLPFSCRAGACSTCAGKLVSGTV-DQSDQSFLDDQQIEAGYVLTCVAYPTSDVTIOTHKEEALY					
(M) <i>Ap.</i> flos-aquae	AT-YKVTI-DAEGTTTIDCPDDTYILDAAEEAGLDLPLPSCRAGACSTCAGKLVTGTI-DQSDQSFLDDQVIEAGYVLTCVAYPTSDVTIETHKEEALY					
(N) <i>C. fritschii</i>	AT-YKVTLINEAEGLNQNTIEVDDDTYILDAAEEAGLDLPLPSCRAGACSTCAGKITSQTV-DQSDQSFLDDQQIEAGYVLTCVAYPTSDCTIETHKEEALY					
(O) <i>Nostoc</i> strain MAC I	ATVYKVTLV-DQEGETTIDVPDDEYILDIAEDQGLDLPSCRAGACSTCAGKIVSGTV-DQSDQSFLDDQQIEKGFLVLTCVAYPTSDKLKIEHEDELY					
(P) <i>Nostoc</i> strain MAC II	AT-YKVRIFNAAEGLDETIEVPDDEYILDAAEEAGLDLPLPSCRAGACSTCAGKLVSGTV-DQSDQNFLODDQQIAAGNVIOTCVAYPTSNCEIETHREDAIA					
(Q) <i>N. muscorum</i>	AT-FKVTLINEAEGTKHEIEVPDDEYILDAAEEEGYDLPFSCRAGACSTCAGKLVSGTV-DQSDQSFLDDQQIEAGYVLTCVAYPTSDVVQIOTHKEEALY					
(R) <i>M. laminosus</i>	AT-YKVTLINEAEGLNKTIEVPDDQYILDAAEEAGLDLPLPSCRAGACSTCAGKLISQTV-DQSDQSFLDDQQIEAGYVLTCVAYPTSDCVIETHKEEALY					
(S) <i>S. maxima</i>	AT-YKVTLINEAEAGINETIQCDDDTYILDAAEEAGLDLPLPSCRAGACSTCAGKITSQSI-DQSDQSFLDDQQIEAGYVLTCVAYPTSDCTIOTHQEELY					
(T) <i>S. platensis</i>	AT-YKVTLINEAEAGINETIQCDDDTYILDAAEEAGLDLPLPSCRAGACSTCAGTISQTI-DQSDQSFLDDQQIEAGYVLTCVAYPTSDCTIKTHQEELY					

Fig. 3. Comparison of the amino acid sequences of cyanobacterial ferredoxins. Gaps are inserted to give maximum homology amongst the sequences. References for the sequences are: A–D, I, K, M–T as listed in [1]; E in [11]; F in [8]; G in [4, 5]; J in [6] and L in [7]. H is the present work. ★ represents a sequence derived from gene analysis.

A	Aphanethece	sacrum	I	0																
B	Aphanethece	sacrum	II	38 0																
C	Aphanethece	halophitica		27 34 0																
D	Synechococcus	sp.		29 41 23 0																
E	Synechococcus	6301		29 33 23 25 0																
F	Synechococcus	6301*		65 69 62 60 62 0																
G	Synechococcus	7942*		29 33 23 25 0 62 0																
H	Synechococcus	6307		28 31 16 23 14 63 14 0																
I	Synechocystis	6714		24 39 24 28 24 60 24 23 0																
J	Anabaena	7120*		27 34 23 26 17 63 17 18 25 0																
K	Anabaena	variabilis		25 33 21 26 19 63 19 18 24 2 0																
L	Anabaena	variabilis	29413*	26 34 21 25 15 61 15 18 24 6 6 0																
M	Aphanizomenon	flos-aquae		28 35 24 27 15 61 15 22 20 17 18 14 0																
N	Chlorogloeopsis	fritschii		27 30 16 26 13 55 13 14 17 17 16 16 14 0																
O	Nostoc	MAC I		28 41 26 21 17 59 17 22 25 19 20 18 16 18 0																
P	Nostoc	MAC II		37 38 32 35 28 67 28 29 35 29 28 29 31 25 34 0																
Q	Nostoc	muscorum		26 34 22 27 18 63 18 19 25 1 1 5 17 17 20 29 0																
R	Mastigocladus	laminosus		25 29 16 25 14 57 14 9 21 13 12 14 16 8 20 25 13 0																
S	Spirulina	maxima		30 31 18 27 19 60 19 19 18 21 20 18 15 12 23 32 21 16 0																
T	Spirulina	platensis		31 31 18 28 18 60 18 17 20 21 20 18 15 11 23 30 21 15 4 0																
	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T

Fig. 4. Matrix of amino acid differences for cyanobacterial ferredoxins. The matrix was derived on the basis of the alignments given in Fig. 3 with each gap counted as one amino acid difference.

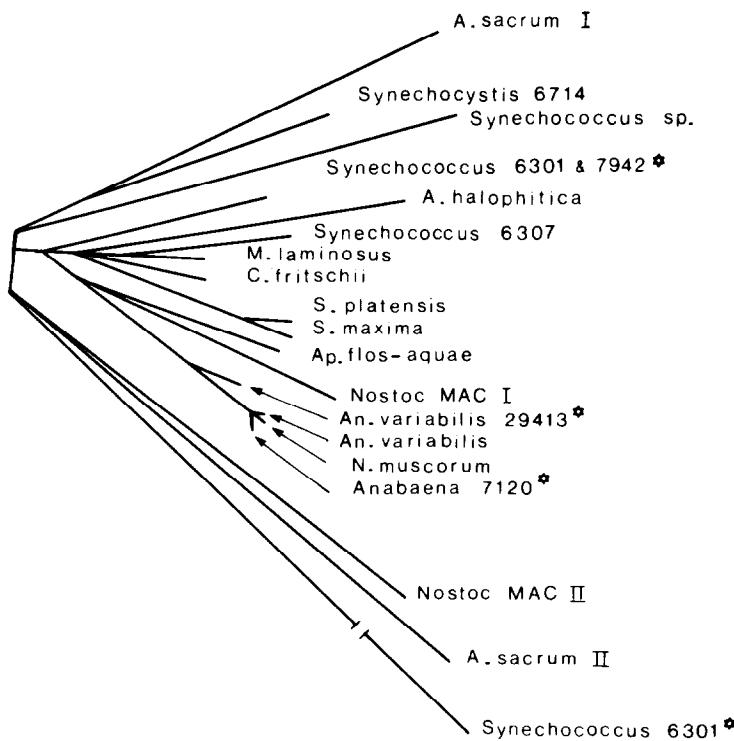


Fig. 5. A phylogenetic tree of cyanobacterial ferredoxins constructed according to [13].

tree was close to that made on the basis of the original amino acid differences with the average deviation between the two matrices being only 11.1%.

EXPERIMENTAL

Organism. *Synechococcus* PCC 6307 was obtained from the Paris Culture Collection (Pasteur Institute, Paris, France). Cultures were grown autotrophically in light [14]. Cultures at 30° were gassed continuously with air/CO₂ (19:1) during illumination (5000 1x). The cyanobacteria were grown in 8 l flasks with a 6% (v/v) inoculum. The yield from each flask was *ca* 15 g of cell paste; an Me₂CO- powder of the cells was prepared immediately and stored until use.

Isolation of ferredoxin. The procedure adopted for purification of the ferredoxin followed closely that described previously for the isolation of ferredoxin from another cyanobacterium *Nostoc* strain MAC [15].

Sequence determination. The amino acid sequence of the ferredoxin was determined by amino (*N*)-terminal manual Edman degradation of the carboxymethylated ferredoxin, carboxyl(C)-terminal analysis with carboxypeptidases A and Y, and manual Edman degradation of peptides derived by lysylen-dopeptidase treatment with supplementary sequencing using chymotrypsin. The experimental protocols have been described previously on a number of occasions [see e.g. 16].

Other methods were as in ref. [15], except mid-point redox potential determination [17].

REFERENCES

1. Rogers, L. J. (1987) in *The Cyanobacteria* (Fay, P. and Van Baalen, C., eds), pp. 35–67. Elsevier, North Holland.
2. Evans, M. C. W. (1982) in *Iron–Sulphur Proteins* Vol. 4. (Spiro, T. G., ed.), pp. 250–284. Wiley Interscience, New York.
3. Matsubara, H. and Hase, T. (1983) in *Proteins and Nucleic Acids in Plant Systematics* (Jensen, U. and Fairbrothers, D., eds), pp. 168–181. Springer, Berlin.
4. Van der Plas, J., de Groot, R. P., Woortman, M. R., Weisbeck, P. J. and van Arkel, G. A. (1986) *Nucleic Acids Res.* **14**, 7804.
5. Reith, M. E., Laudenbach, D. E. and Straus, N. A. (1986) *J. Bacteriol.* **168**, 1319.
6. Alam J, Whitaker, R. A., Krogmann, D. W. and Curtis, S. E. (1986) *J. Bacteriol.* **168**, 1265.
7. Van der Plas, J., de Groot, R. P., Weisbeck, P. J. and van Arkel, G. A. (1986) *Nucleic Acids Res.* **14**, 7803.
8. Cozens, A. L. and Walker, J. E. (1987) *J. Mol. Biol.* **194**, 359.
9. Wada, K., Masui, R., Matsubara, H. and Rogers, L. J. (1988) *Biochem. J.* **252**, 571.
10. Hase, T., Inoue, K., Hagihara, N., Matsubara, H., Williams, M. M. and Rogers, L. J. (1983) *J. Biochem.* **94**, 1457.
11. Wada, K., Masui, R., Matsubara, H. and Rogers, L. J. (1988) in *The Cyanobacteria* (Rogers, L. J. and Gallon, J. R., eds). Elsevier, North Holland (in press).
12. Herdman, M., Janvier, M., Waterbury, J. B., Rippka, R., Stanier, R. Y. and Mandel, M. (1979) *J. Gen. Microbiol.* **111**, 63.
13. Fitch, W. M. and Margoliash, E. (1967) *Science*, **155**, 279.
14. Smith, A. J., London, J. and Stanier, R. Y. (1967) *J. Bacteriol.* **94**, 972.
15. Hutson, K. G., Rogers, L. J., Haslett, B. G., Boulter, D. and Cammack, R. (1978) *Biochem. J.* **172**, 465.
16. Hase, T., Matsubara, H., Hutson, G. N. and Rogers, L. J. (1982) *J. Biochem. (Tokyo)* **92**, 1347.
17. Masui, R., Wada, K., Matsubara, H., Williams, M. M. and Rogers, L. J. (1988) *Phytochemistry*, **27**, 2817.